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This article examines the rise, decline, and resurgence 
of the use of computer algebra systems (CAS) in 
the mathematics classroom. From the excitement 
surrounding the technology’s potential to revolutionize 
the teaching of mathematics, it explores the difficulties 
that prevented this vision from being fully realized, and 
then introduces a fundamental advancement in the CAS 
world that finally puts the dream of modern, effective 
mathematics education within our grasp.  

The ambition to make a computer-algebra system the 
“tool of first recourse for teaching, learning, and doing” 
mathematics was expressed in the 1987 National 
Science Foundation (NSF) grant that funded the first 
step in bringing computers into the classroom at the 
Rose-Hulman Institute of Technology (RHIT). The first 
CAS classes there were taught in the fall of 1988, 
and by 1991 all of the required five math courses for 
engineering and science students were so taught. By 
1995, the Institute adopted a laptop policy, and the 
dream of a ubiquitous mathematical servant was in the 
offing.

The calculus-reform movement of the mid-to-late 
1980s had induced many pioneers to establish 
computer labs running some form of CAS, and to try 
different paradigms for incorporating this technology 
into the curriculum. At the same time several 

researchers in math education studied and enunciated 
a paradigm for using this technology. Captured in 
the phrase “resequencing skills and concepts,” this 
paradigm suggested that the CAS be used to present 
concepts “first” before any emphasis on concomitant 
manipulative skills. Once the concept had been 
digested, the requisite skills could be explored in the 
CAS, then mastered to whatever extent necessary for a 
by-hand environment. 

What a glorious vision! Instructors actually teaching 
mathematics, emphasizing a conceptual understanding 
of the material, engaging students with ideas, not drills. 
Students actually learning and adsorbing mathematical 
ideas, not struggling with manipulations for which 
they saw no purpose. But what went wrong? Why 
did this vision fade? As of the mid 1990s, nearly all 
of the available CAS tools were command-driven, the 
exception being Derive, discontinued in 2007. This 
required that students first learn the tool before any of 
its benefits could be experienced. Initially, the pioneers 
who first brought CAS into the classroom were willing 
to “pay the price” of convincing students that learning 
the language of a CAS was worth the effort. But this 
approach did not take hold with those who were called 
on to sustain the vision of the pioneers. A gradual 
disenchantment with the potential of CAS as the 
working tool for math instruction set in.
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Another obstacle to a wholesale adoption of CAS as a 
working tool was the restriction the lab environment 
imposed on the process. If students experience 
CAS as a lab activity, it fails to be integrated into 
the curriculum, and cannot become the tool of first 
recourse. Mandatory lab exercises are seen as extra 
work, over and above the standard by-hand activities 
endemic to the traditional courses. Students are wise 
enough to see this, and they rebel against a technology 
that seems to increase their workload rather than 
diminish it. What’s on the test is the typical student’s 
concern, and if the test is done with pencil and paper, 
then those are the skills the student wants to learn.

Three things are necessary for a new technology to take 
hold: applicability, accessibility and ease-of-use. The 
new technology must be an improvement over existing 
modes. It must be readily available. And it has to be 
easy to implement.

Surely a computing device that can manipulate symbols 
and perform nearly all the manipulations of the first 
few years of college mathematics must be seen as a 
useful tool. That it is useful for doing mathematics is 
evidenced by its use in industry and commerce today. 
That it is useful for teaching and learning mathematics 
is evidenced by its appearance in numerous college 
math, science and engineering courses.

The laptop computer (and even the advanced 
“graphing” calculator) promised accessibility; ease-
of-use was another matter. At RHIT in the early 90’s, 
where Maple had been adopted as the standard CAS, a 
14-page syntax guide was a necessary hand-out at the 
beginning of the calculus sequence, which itself had to 
be modified to allow for students to acquire enough 
mastery of Maple for the actual course material to be 
presented in that context. The first three weeks of the 
first term were devoted to those review topics that 
are embedded in the course. Topics such as solving 
equations, graphing, finding inverse functions, etc., 
were used as the training grounds for mastering Maple. 
(It had been discovered right at the beginning that 
trying to teach syntax and new concepts at the same 
time just didn’t work.) By the end of the second term, all 
the traditional topics had been covered, the efficiencies 
of having a CAS available essentially compensated 
for spending capital at the beginning of the first term 
learning Maple. (This changed over time as new releases 
of Maple became easier and easier to use.)

Note, however, that not all of the effort of learning to 
use a CAS as a working tool goes into mastering the 
syntax of its commands. What was observed at RHIT 
was the student jousting with the structure imposed 
by the rigidities of a computer language. For example, 
students wanted to “solve” derivatives, integrals, limits, 
rather than evaluate them. Well, the CAS has specific 
commands for these actions, and misuse of a command 
because of linguistic sloppiness has a way of bringing a 
student up short. In an environment where the CAS-
based course could be avoided, many students did just 
that. In an environment where the CAS is seen as an 
extra burden, it does not take hold and thrive.

But some technologies did take hold in the past. 
High-school math in the 1950s included learning 
how to use logarithms as a tool for multiplying and 
dividing cumbersome numbers. In the early 1960s, it 
was impossible to get through chemistry and physics 
courses (with their concomitant labs) without knowing 
how to use a slide rule. By the early 1970s the hand-
held calculator was starting to appear as a working tool. 
In fact, by the mid 1970s, calculators that could, with 
one entry of a set of data points, compute all the sums, 
and sums of squares, and sums of products needed for 
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a least-squares fit of a line to the data revolutionized 
the statistics lab. And anyone who can still take a 
square-root by hand is an exception, even amongst a 
gathering of mathematicians.

Logarithms are no longer proposed as a viable working 
tool for multiplying and dividing numbers. This topic 
succumbed to the hand-held calculator. Slide rules 
disappeared from the college classroom with the advent 
of the personal computer. Least-squares computations 
are trivialized by modern software. And nobody 
ever takes a square root by hand. The point is that 
technologies that save work, are easy to use, and are 
readily available will displace older and less productive 
ones. Just think of modern industry. For example, in 
a furniture factory, boards are planed smooth in a 
power planer, not with a hand-held jointing plane. The 
apprenticeship in which the journeyman carpenter 
mastered the skills needed to true a board was long 
and exacting. It makes little sense to perpetuate such a 
parallel process in the academic “factory.” Technologies 
like the CAS that can replace error-prone tedium with 
instantaneous results must be allowed to displace 
slower and more labor-intensive approaches.

Students should not be subjected to every step 
through which their instructors trod on the way 
to their level of expertise. In other words it is not 
necessary academically that ontogeny recapitulate 
phylogeny, a biological theory holding that in 
developing from embryo to adult, animals go through 
stages resembling or representing successive stages 
of their remote ancestors. This is a largely discredited 
evolutionary theory, but one that seems to survive in 
the mathematics curriculum students are expected to 
absorb. It is not necessary that every student needing 
some mathematical understanding be subjected to 
the arduous training course that leads to an advanced 
degree in the subject. The only way to break the bonds 
the traditional math curriculum imposed on students 
is to adopt the computational power of a CAS as the 
primary working tool. Indeed, at least one software 
company is taking a leading role in advocating new 
“computer-based” curricula at all levels of mathematics 
education. 

Readily available and powerful software can be the 
basis for a new apprenticeship in STEM (science, 
technology, engineering, and mathematics) courses. 
An example why this author found this to be so 
arose from his early experience with Maple in the 
classroom at RHIT. Fourier series (sums of sinusoids 
that approximate a function) were part of the required 
curriculum. The coefficients in the sums are the values 
of certain definite integrals. Prior to the availability of 
Maple, it was observed that students would write a 
summation symbol, execute some integrals (usually 
wrong) and submit what was a meaningless assemblage 
of symbols. In classes after the introduction of Maple 
whereby students could graph both the function and 
their proposed Fourier approximations, their behavior 
changed. They would come with graphs that showed 
their approximations did not represent the function, 
now aware that they had made an error. Their question 
now was: Based on the graphs, could I help them 
determine just what error had been made. Obviously, a 
significant conceptual understanding of a Fourier series 
had been achieved.

In Figure 1, the definition of the derivative as the 
limiting value of the difference quotient is applied to 
a polynomial. Notice the pedagogical “resequencing” 
whereby Maple first delivers the end result, then is 
used to implement the algebraic steps of the derivation. 
According to Figure 1, the polynomial is entered as the 
function and the definition of the derivative, namely, 
the limit of the difference quotient, is implemented via 
Maple’s natural mathematical notation, just as it would 
appear in a textbook. The evaluation is immediate 
through the Context Menu (a pop-up menu from 
which options can be selected), or equivalently, via 
the keyboard. The derivative is also obtained using the 
notations of both Newton and Leibniz, just to verify 
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that these notations mean exactly what the definition 
claims they mean. Finally, the algebraic steps of the 
calculation are implemented in Maple, primarily via the 
Context Menu system.

Another example from the experiences of this author 
has to do with teaching the definite integral as the limit 
of an appropriate Riemann sum. Now a Riemann sum 
is the sum of products of function values and small 
increments, the sum representing the approximate area 
under the graph of the function. Before the advent 
of the hand-held calculator, attempts to teach this 
concept by doing arithmetic by hand, writing columns 
of numbers on the blackboard, etc., were totally useless. 
This approach did no hold students’ attention for more 
than mere minutes, and the concept never got off the 
ground. With the advent of the hand-held calculator, 
it seemed that students could be led through all the 
arithmetic to arrive at a meaningful approximation. 
Unfortunately, it is impossible to coerce thirty students 
to uniformly and accurately press all the right keys 
of a calculator, even if every student has the same 
calculator. And with no record of what keys were 
pressed, even these experiments were an abysmal 
failure.

However, the tools in Maple make this task transparent. 
To begin, consider the image of the Riemann Sum tutor 
in Figure 2. The graph displayed shows how the area 
under the graph of a function is approximated by the 
sum of areas of equi-spaced rectangles under the curve, 

and very quickly allows the user to see the effect of 
different partitions, and different strategies for forming 
the sum. 

In Figure 2, the Riemann Sums tutor has been applied 
to the function on the interval . The default partition 
is ten equal subintervals, and the default sum is a 
midpoint sum. The actual and approximate areas under 
the curve are given beneath the graph. As different 
choices of parameters are made, the graph and the 
displayed values beneath it are updated. An interface 
like this allows students to explore the concept of 
the Riemann sum without the burden of having to 
do or implement the calculations, let alone draw the 
corresponding figures.

Figure 2. The Riemann Sums tutor applied to 
f(x)=x2 on the interval [0,1]

Figure 1. Applying the definition of the derivative to a polynomial



5

The graph in Figure 2 is drawn by the RiemannSum 
command that appears at the bottom of the tutor in 
Figure 2. This command will also return the actual 
Riemann sum, even one with an indeterminate number 
of subintervals. An example of this is shown in Figure 3 
where, in addition, the value command has been applied 
to obtain a closed-form of the sum, a form from which 
the limit as becomes infinite can be determined. This 
encompasses the definition of the definite integral, and 
allows the student to see the definition “in action.” 

Figure 4 again illustrates the definition of the definite 
integral, this time implemented with Maple’s “point-and-
click” syntax-free technology. The integrand is defined 
as a function via the Context Sensitive (pop-up) Menu. 
The limit and summation operators are implemented 
as palette templates. The evaluation of the limit of 
the Riemann left-sum is via the Context Menu. The 
mathematics in Figure 3 is exactly the mathematics a 
textbook would use to express the same concept. That 
Maple can use the same notation, and that this notation 
is connected to the underlying computing engine, is the 
significant observation.

Of course, the Riemann sum itself, and its closed-form 
equivalent, can be obtained with this natural notation 
and without the burden of specialized syntax. Seen in 
Figure 5, these additional steps are implemented via the 
Context Menu by simply launching the pop-up menu 
system on the expressions themselves.

The Riemann sum in Figure 5 is constructed from a 
palette template, and is evaluated to a closed-form 
expression by invoking the Context Menu or its 
keyboard equivalent. This transition requires some 
algebraic skill. In the traditional classroom, considerable 
time and energy must be devoted to this step. By 
the time students have become sufficiently skilled to 
evaluate the Riemann sum by hand, the connection of 
the process to the definition of the definite integral has 
evaporated. The acquisition of byhand manipulative 
skills interferes with the absorption of the higher-
level concept that the manipulations are supposed 
to serve. If the tool with which these manipulations 
were itself equally burdensome to master, it would 
be a wash - one difficult process replaced by another. 
That a tool like Maple can easily and naturally replace a 
tedious manipulation is important for continuity in the 
exposition of a concept.

Countless additional examples could be given in 
support of the contention that not only must the 
technological tools of a CAS be robust and readily 
available, but they must also be easy to apply. 
Examples showing how the tools in Maple satisfy the 
requirements of robustness and ease-of-use can be 
found at http://www.maplesoft.com/teachingconcepts/. 
On this page one finds recorded demonstrations in 
which standard problems from calculus, differential 
equations, and linear algebra are solved with a point-
and-click paradigm. Indeed, more than 150 such 
nontrivial examples are listed, and are articulated 
using built-in tools that require the use of not a single 
command.

New technologies that improve on existing tools get 
adopted. It has even happened in mathematics as 
tables of logarithms sliderules gave way to calculators, 
then computers. But the really radical step of making a 
CAS the tool of first recourse in teaching, learning, and 
doing mathematics has not yet happened, in large part 
because the learning curve is too steep. 

Except for Maple, where the learning curve is 
relatively flat because of its ease-of-use paradigm. 

Figure 3. The RiemannSum command with an  
indeterminate number of subdivisions

Figure 5. The Riemann sum and its limit

Figure 4. Syntax-free Maple implementation of the 
definite integral

http://www.maplesoft.com/teachingconcepts/
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As the examples in Figures 1-5 and on the Teaching 
Concepts page on the Maplesoft site show, significant 
mathematical exploration and problem-solving can be 
implemented in Maple without first having to make a 
capital investment in learning how to use the tool.

This simplicity allows the strategy of resequencing 
concepts and skills to be realized. Because Maple is 
easy to use, there is no long build-up to the exploration 
of a new concept. The mathematical ideas inherent in 
a topic can be investigated, experienced, manipulated, 
and learned by using Maple as the working tool, without 
first having to master a set of manipulative skills. The 
steps of associated algorithms can be implemented 
in Maple without the need for a prior mastery of 
manipulative skills. When the student first grasps the 
concept and sees how the details relate to this “big 
picture,” mastering the relevant by-hand skills then 
takes place so much more effectively and efficiently.


