Conditioning Air into the Human Comfort Zone

Introduction

Humans generally feel comfortable between temperatures of 22 °C to 27 °C and a relative humidity of 40% to 60%.

In this application, air at 35 °C and 60% relative humidity will be conditioned into the human comfort zone, with the thermodynamic process plotted on a psychrometric chart. To do this, we will

- first cool the air to 14 °C (this removes some of the water from the air),
- and then heat the air to 24 °C.

Additionally, we will calculate

- the heat and mass of water removed in the cooling phase,
- and the heat added in the heating phase.

Plot the Comfort Zone on the Psychrometric Chart

> restart :
with(ThermophysicalData) : with(plots) :

Functions for the lower and upper bounds of the human comfort zone.

- > lower := $T \rightarrow Property(humidityratio, HumidAir, P = 101325, Tdb = T, R = 0.4)$:
- > upper := T→Property(humidityratio, HumidAir, P = 101325, Tdb = T, R = 0.6) :

Shade the human comfort zone between 22 °C and 27 °C.

> comfortZone := shadebetween(lower, upper, 273.15 + 22..273.15 + 27) :

Plot the human comfort zone on a psychrometric chart.

> display(PsychrometricChart(), comfortZone)

Plotting the Thermodynamic Cycle

Initially the air is at a temperature of 35 °C at a relative humidity of 60%

- > $T_1 := 35 + 273.15$:
- > $hr_1 := Property(humidityratio, HumidAir, Tdb = T_1, "P" = 101325, "R" = 0.6)$

 $hr_1 := 0.0215466608092004797$

Then, we cool the air, and calculate the temperature at saturation (that is, the temperature at which the relative humidity is 1).

> $T_2 := \text{Property}(\text{Tdb}, \text{HumidAir}, \text{R} = 1, \text{P} = 101325, \text{humidityratio} = hr_1)$ $T_2 := 299.222762357176293$

> $hr_2 := hr_1$:

We continue cooling along the saturation line until we reach 14 °C (in this process, water condenses out of the air).

T₃ := 14 + 273.15 :
hr₃ := Property(humidityratio, HumidAir, Tdb = *T₃*, P = 101325, R = 1)

 $hr_3 := 0.0100133227960854491$

Now we heat the air until it reaches 24 °C.

>
$$T_{d} := 273.15 + 24$$
:

>
$$hr_4 := hr_3$$
:

Hence the entire thermodynamic cycle can then be plotted.

- > route1 := pointplot($[[T_1, hr_1], [T_2, hr_2]]$, connect = true, thickness = 4) : route2 := pointplot($[[T_3, hr_3], [T_4, hr_4]]$, connect = true, thickness = 4) :
- satLine := plot(Property("humidityratio", HumidAir, Tdb = T, P = 101325, R = 1), T = T₂..T₃, color = black, thickness = 4) :
- > display(PsychrometricChart(), comfortZone, route1, route2, satLine)

Heat Changes and Water Removed over the Thermodynamic Cycle

Water removed in the cooling process (in kg water per kg dry air)

> $hr_2 - hr_3$

0.01153333801

Heat removed in the cooling process (in J kg⁻¹)

- > $h_1 := \text{Property}(\text{enthalpyperdryair}, \text{HumidAir}, \text{Tdb} = T_1, \text{P} = 101325, \text{R} = 0.6)$:
- > $h_3 := \text{Property}(\text{enthalpyperdryair}, \text{HumidAir}, \text{Tdb} = T_3, \text{P} = 101325, \text{R} = 1)$:
- > $h_1 h_3$

51101.11785

Heat added in the heating process (in J kg⁻¹)

- > $h_4 := \text{Property}(\text{enthalpyperdryair}, \text{HumidAir}, \text{Tdb} = T_{4'} \text{P} = 101325, \text{R} = 0.5)$:
- > $h_4 h_3$

8537.89452